Skip to content
Home » Semiconductor Physics And Devices 4Th Edition | Introduction To Semiconductor Physics And Devices 상위 114개 답변

Semiconductor Physics And Devices 4Th Edition | Introduction To Semiconductor Physics And Devices 상위 114개 답변

당신은 주제를 찾고 있습니까 “semiconductor physics and devices 4th edition – Introduction to Semiconductor Physics and Devices“? 다음 카테고리의 웹사이트 https://ro.taphoamini.com 에서 귀하의 모든 질문에 답변해 드립니다: https://ro.taphoamini.com/wiki. 바로 아래에서 답을 찾을 수 있습니다. 작성자 Jordan Edmunds 이(가) 작성한 기사에는 조회수 145,662회 및 좋아요 1,609개 개의 좋아요가 있습니다.

semiconductor physics and devices 4th edition 주제에 대한 동영상 보기

여기에서 이 주제에 대한 비디오를 시청하십시오. 주의 깊게 살펴보고 읽고 있는 내용에 대한 피드백을 제공하세요!

d여기에서 Introduction to Semiconductor Physics and Devices – semiconductor physics and devices 4th edition 주제에 대한 세부정보를 참조하세요

https://www.patreon.com/edmundsj
If you want to see more of these videos, or would like to say thanks for this one, the best way you can do that is by becoming a patron – see the link above :). And a huge thank you to all my existing patrons – you make these videos possible.
In this video, I talk about the roadmap to learning semiconductor physics, and what the driving questions we are trying to answer are.
This is part of my series on semiconductor physics (often called Electronics 1 at university). This is based on the book Semiconductor Physics and Devices by Donald Neamen, as well as the EECS 170A/174 courses taught at UC Irvine.

Hope you found this video helpful, please post in the comments below anything I can do to improve future videos, or suggestions you have for future videos.

semiconductor physics and devices 4th edition 주제에 대한 자세한 내용은 여기를 참조하세요.

Semiconductor Physics and Devices – OptiMa-UFAM

SEMICONDUCTOR PHYSICS & DEVICES: BASIC PRINCIPLES, FOURTH EDITION … Semiconductor physics and devices : basic principles / Donald A. Neamen. — 4th ed.

+ 여기에 더 보기

Source: www.optima.ufam.edu.br

Date Published: 10/18/2022

View: 7303

Physics of Semiconductor Devices, 4th Edition – Wiley

The Fourth Edition of Physics of Semiconductor Devices remains the standard reference work on the fundamental physics and operational characteristics of all …

+ 여기에 표시

Source: www.wiley.com

Date Published: 12/6/2021

View: 4487

Semiconductor Physics and Devices – Fulvio Frisone

Semiconductor physics and devices : basic principles 1 Donald A. Neamen. -3rd ed. p. cm. Includes bibliographical references and index. ISBN 0-07-232 107- …

+ 자세한 내용은 여기를 클릭하십시오

Source: www.fulviofrisone.com

Date Published: 12/2/2022

View: 2703

Semiconductor Physics and Devices 4th edition Neaman pdf

Semiconductor Physics and Devices: Basic Principles, 4th edition Chapter 1. By D. A. Neamen Problem Solutions. ______. ______. Chapter 1. Problem Solutions.

+ 자세한 내용은 여기를 클릭하십시오

Source: www.studocu.com

Date Published: 11/23/2022

View: 2444

Semiconductor Physics Devices Donald Neamen 4th Edition

Yeah, reviewing a book Semiconductor Physics Devices Donald Neamen 4th Edition could be credited with your near associates listings.

+ 여기에 자세히 보기

Source: tunxis.commnet.edu

Date Published: 7/21/2021

View: 6650

주제와 관련된 이미지 semiconductor physics and devices 4th edition

주제와 관련된 더 많은 사진을 참조하십시오 Introduction to Semiconductor Physics and Devices. 댓글에서 더 많은 관련 이미지를 보거나 필요한 경우 더 많은 관련 기사를 볼 수 있습니다.

Introduction to Semiconductor Physics and Devices
Introduction to Semiconductor Physics and Devices

주제에 대한 기사 평가 semiconductor physics and devices 4th edition

  • Author: Jordan Edmunds
  • Views: 조회수 145,662회
  • Likes: 좋아요 1,609개
  • Date Published: 2018. 3. 25.
  • Video Url link: https://www.youtube.com/watch?v=OVnVN0vSXn0

Physics of Semiconductor Devices, 4th Edition

S. M. SZE, P H D, is Honorary Chair Professor, College of Electrical and Computer Engineering, National Chiao Tung University, Taiwan. He has made fundamental and pioneering contributions to semiconductor devices, particularly his co-discovery of the floating-gate memory (FGM) effect that has ushered in the Fourth Industrial Revolution. Dr. Sze has authored, co-authored, and edited more than 400 papers and 16 books. He is a celebrated Member of IEEE, an Academician of Academia Simica, and a member of the US National Academy of Engineering.

YIMING LI, P H D, is Full Professor of Electrical and Computer Engineering at National Chiao Tung University, Taiwan. He has been a Visiting Professor in Stanford University, Grenoble INP, and Tohoku University. He has published more than 300 technical articles in journals, conferences, and book chapters. Dr. Li is an active member of IEEE and has served on technical committees for many international professional conferences including IEDM. He is the recipient of the Pan Wen-Yuan Foundation’s Research Fellowship Award and the Chinese Institute of Electrical Engineering’s Outstanding Young Electrical Engineer Award.

Semiconductor Physics and Devices 4th edition Neaman pdf

Semiconductor Physics and Devices: Basic Principles, 4 edition Chapter 1

By D. A. Neamen Problem Solutions

Chapter 1

Problem Solutions

1.

(a) fcc: 8 corner atoms 8/1  1 atom

6 face atoms  2/1  3 atoms

Total of 4 atoms per unit cell

(b) bcc: 8 corner atoms 8/1  1 atom

1 enclosed atom =1 atom Total of 2 atoms per unit cell

(c) Diamond: 8 corner atoms 8/1  1 atom

6 face atoms 2/1  3 atoms

4 enclosed atoms = 4 atoms Total of 8 atoms per unit cell

1.

(a) Simple cubic lattice: a  2 r

Unit cell vol  

3 3 3  a  2 r  8 r

1 atom per cell, so atom vol  

 

  3

4 1

3  r

Then

Ratio 100 % 52 %4. 8

3

4

3

3

 

 

 

 

 r

 r

(b) Face-centered cubic lattice

r

d d  r  a  a   2 2  2

4 2

Unit cell vol  

3 3 3  a  2 2  r  16 2  r

4 atoms per cell, so atom vol  

 

  3

4 4

3  r

Then

Ratio

 

100 % 74 % 16 2

3

4 4

3

3

  

 

 

 

 r

 r

(c) Body-centered cubic lattice

d  r  a  a   r 3

4 43

Unit cell vol

3 3

3

4 

 

 

 

  a   r

2 atoms per cell, so atom vol  

 

  3

4 2

3  r

Then

Ratio

 

100 % 68 %

3

4

3

4 2

3

3

 

 

 

 

 r

 r

(d) Diamond lattice

Body diagonal  d  r  a  a   r 3

8 8 3

Unit cell vol

3 3

3

8 

 

 

 

  

r a

8 atoms per cell, so atom vol  

 

 

 

  3

4 8

3  r

Then

Ratio

 

100 % 34 %

3

8

3

4 8

3

3

 

 

 

 

 

 r

 r

1.

(a)

o a  .5 43 A ; From Problem 1,

a   r 3

8

Then

  o

A

a r .1 176 8

.5 43 3

8

3   

Center of one silicon atom to center of

nearest neighbor

o  2 r  .2 35 A (b) Number density

 

22 83

5 10 .5 43 10

8   

 

cm  3

(c) Mass density

    

23

22

.6 02 10

.. 5 10 28. 09

    NA

NAtWt 

 .2 33 grams/cm 3

Semiconductor Physics and Devices: Basic Principles, 4 edition Chapter 1

By D. A. Neamen Problem Solutions

1.

(a) 4 Ga atoms per unit cell

Number density

 

83 .5 65 10

4  

Density of Ga atoms 22  .2 22  10 cm  3

4 As atoms per unit cell

Density of As atoms

22  .2 22  10 cm  3

(b) 8 Ge atoms per unit cell

Number density

 

83 .5 65 10

8  

Density of Ge atoms 22  .4 44  10 cm  3

1.

From Figure 1.

####### (a)   a

a d .0 4330 2

3

2

 

  

  

 

  

o .0 4330 .5 65  d  .2 447 A

(b)   a

a d 2 .0 7071 2

  

  

 

  

o  .0 7071 .5 65  d  .3 995 A

1.

     

  

 54. 74 3 2

2

3 2

2 2 2

sin

 

a

a

 109 5.

1.

(a) Simple cubic:

o a  2 r  9 A

(b) fcc:

o A

r a .5 515 2

4  

(c) bcc:

o A

r a .4 503 3

4  

(d) diamond:

#######   o

A

r a .9 007 3

42  

1.

####### (a)  .12 035 2   .12 035  2 rB

o rB  .0 4287 A

(b)  

o a  .12 035  .2 07 A

(c) A-atoms: # of atoms 1 8

1  8  

Density

 

83 .2 07 10

1  

23  .1 13  10 cm  3

B-atoms: # of atoms 3 2

1  6  

Density

 

83 .2 07 10

3  

23  .3 38  10 cm  3

1.

(a)

o a  2 r  5 A

8

of atoms 1

1  8  

Number density

 

83 5 10

1

 

22  .1 097  10 cm  3

Mass density

#######  

NA

NAtWt .. 

  

23

22

.6 02 10

.1 0974 10 12 5.

 

 .0 228 gm/cm

3

(b)

o A

r a .5 196 3

4  

8

of atoms 1 2

1 8   

Number density

 

83 .5 196 10

2

 

22  .1 4257  10 cm

 3

Mass density

  

23

22

.6 02 10

.1 4257 10 12 5.

 

 .0 296 gm/cm

3

1. From Problem 1, percent volume of fcc atoms is 74%; Therefore after coffee is ground,

Volume = 0 cm 3

Semiconductor Physics and Devices: Basic Principles, 4 edition Chapter 1

By D. A. Neamen Problem Solutions

1.

(a)

  313

1

1 , 3

1 , 1

1  

  

(b)

  121

4

1 , 2

1 , 4

1  

  

1.

Intercepts: 2, 4, 3 

  

  3

1 , 4

1 , 2

1

(634) plane

1.

(a)

o d  a  .5 28 A

(b)

o A

a d .3 734 2

2  

(c)

o A

a d .3 048 3

3  

1.

(a) Simple cubic

(i) (100) plane:

Surface density

 

2 82 .4 73 10

1 1

 

  a

14  .4 47  10 cm  2

(ii) (110) plane:

Surface density 2

1 2 a

14  .3 16  10 cm  2

(iii) (111) plane:

Area of plane bh 2

1 

where

o b  a 2  .6 689 A

Now

   

2

2 2 2 2 4

3

2

2 2 a

a h a  

  

So  

o h .4 73 .5 793 A 2

6  

Area of plane

  

8 8 .6 68923 10 .5 79304 10 2

1     

16 19. 3755 10

   cm 2

Surface density 16 19. 3755 10

6

1 3

 

14  .2 58  10 cm  2

(b) bcc (i) (100) plane:

Surface density

14 2 .4 47 10

1    a

cm  2

(ii) (110) plane:

Surface density 2

2 2 a

14  .6 32  10 cm  2

(iii) (111) plane:

Surface density 16 19. 3755 10

6

1 3

 

14  .2 58  10 cm  2

(c) fcc (i) (100) plane:

Surface density

14 2 .8 94 10

2    a

cm  2

(ii) (110) plane:

Surface density 2

2 2 a

14  .6 32  10 cm  2

(iii) (111) plane:

Surface density 16 19. 3755 10

2

1 3 6

1 3

 

  

15  .1 03  10 cm  2

1. (a) (100) plane: – similar to a fcc:

Surface density

 

82 .5 43 10

2

 

14  .6 78  10 cm  2

(b) (110) plane:

Surface density

 

82 .52 43 10

4  

14  .9 59  10 cm  2

Semiconductor Physics and Devices: Basic Principles, 4 edition Chapter 1

By D. A. Neamen Problem Solutions

(c) (111) plane:

Surface density

  

82 .523 43 10

2  

14  .7 83  10 cm  2

1.

  o

A

r a .6 703 2

.24 37

2

4   

(a) #/cm 3

 

3 83 .6 703 10

2 4

1 6 8

1 8

 

    a

22  .1 328  10 cm  3

(b) #/cm

2

2

2

1 2 4

1 4

2 a

   

.6 703 10  2

2  82 

14  .3 148  10 cm  2

(c)

  o

A

a d .4 74 2

.6 703 2

2

2   

(d) # of atoms 2 2

1 3 6

1  3    

Area of plane: (see Problem 1) o b  a 2  .9 4786 A

o A

a h .8 2099 2

6  

Area

  

8 8 .9 4786 10 .8 2099 10 2

1

2

1    bh   

15 .3 8909 10    cm 2

#/cm 2 15 .3 8909 10

2  

= 14 .5 14  10 cm  2

  o

A

a d .3 87 3

.6 703 3

3

3   

1.

Density of silicon atoms

22  5  10 cm  3 and

4 valence electrons per atom, so

Density of valence electrons 23  2  10 cm  3

1. Density of GaAs atoms

 

22 83

.4 44 10 .5 65 10

8   

 

cm  3

An average of 4 valence electrons per atom, So Density of valence electrons 23  .1 77  10 cm  3

1.

(a) 100 % 10 % 5 10

5103 22

17    

(b) 100 % 4 10 % 5 10

2106 22

15     

1. (a) Fraction by weight

  

  

7 22

16 .1 542 10 5 10 28. 06

2 10 10. 82    

 

(b) Fraction by weight

  

  

5 22

18 .2 208 10 5 10 28. 06

10 30. 98    

1.

Volume density 16 3 2 10

1    d

cm  3

So 6 .3 684 10  d   cm

o  d  368 4. A

We have

o ao  .5 43 A

Then 67. 85 .5 43

368 4.   ao

d

1.

Volume density

15 3 4 10

1    d

cm

 3

So

6 .6 30 10

 d   cm

o  d  630 A

We have

o ao  .5 43 A

Then 116 .5 43

630   ao

d

Semiconductor Physics and Devices: Basic Principles, 4 edition Chapter 2

By D. A. Neamen Problem Solutions

(b)

   

27 19 .12 67 10 6.12 10

  p   

23 .2 532 10

   kg-m/s

11 23

34 .2 62 10 .2 532 10

.6 62510  

   

  m

or

o  .0 262 A

2.

.0 0259  .0 03885

2

3

2

3   

  

 Eavg  kT  eV

Now

pavg  2 mEavg

   

31 19 .92 11 10 .0 03885 6 10

    

or

25 .1 064 10  pavg   kg-m/s

Now

9 25

34 .6 225 10 .1 064 10

.6 62510  

   

   p

h  m

or o  62. 25 A

2.

p

p p

hc E h 

  

Now

m

p E e e 2

2  and

2

2

1 

 

 

 

    e

e e

e

h

m

E

h p  

Set Ep  Ee and  p  10  e

Then

2 2 10

2

1

2

1 

  

 

 

 

  p e p

h

m

h

m

hc

  

which yields

mc

h p 2

100  

100

2 2 100

2 mc mc h

hc hc E E p

p      

  

100

.92 11 10 3 10

31 82   

15 .1 64 10    J  10. 25 keV

2.

(a) 10

34

85 10

.6 625 10 

   

h p

26 .7 794 10

   kg-m/s

4 31

26 .8 56 10 .9 11 10

.7 794 10   

   

m

p  m/s

or 6  .8 56  10 cm/s

  

2 31 42 .9 11 10 .8 56 10 2

1

2

1      E m 

21 .3 33 10    J

or

2 19

21 .2 08 10 6 10

.3 33410  

   

 E  eV

(b)   

31 32 .9 11 10 8 10 2

1   

 E

23 .2 915 10

   J

or 4 19

23 .1 82 10 6 10

.2 91510  

   

 E  eV

  

31 3   .9 11  10 8  10  p m 

27 .7 288 10    kg-m/s

8 27

35 .9 09 10 .7 288 10

.6 62510  

   

   p

h  m

or

o  909 A

2.

(a)

  

10

34 8

1 10

.6 625 10 3 10 

     

hc E h

15 .1 99 10    J

Now

19

15

6 10

.1 99 10 

     e

E E Ve V

4 V  .1 24  10 V 12 4. kV

(b)   

31 15 2 .92 11 10 .1 99 10

  p  mE   

23 .6 02 10

   kg-m/s Then

11 23

34 .1 10 10 .6 02 10

.6 62510  

   

   p

h  m

or o  .0 11 A

Semiconductor Physics and Devices: Basic Principles, 4 edition Chapter 2

By D. A. Neamen Problem Solutions

2.

6

34

10

.1 054 10 

   

  x

p

28 .1 054 10

   kg-m/s

2.

(a) (i)  xp 

26 10

34 .8 783 10 12 10

.1 05410  

   

  p  kg-m/s

(ii) p m

p

dp

d p dp

dE E  

 

 

 

     2

2

m

pp p m

p     2

2

Now p  2 mE

   

31 19 92 10 16 6 10

    

24 .2 147 10

   kg-m/s

so

  

31

24 26

9 10

.2 1466 10 .8 783 10 

 

   E 

19 .2 095 10

   J

or .1 31 6 10

.2 095 10 19

19  

   

 E eV

(b) (i)

26 .8 783 10

  p   kg-m/s

(ii)    

28 19 52 10 16 6 10

  p   

23 .5 06 10

   kg-m/s

  

28

23 26

5 10

.5 06 10 .8 783 10 

 

   E 

21 .8 888 10

   J

or

2 19

21 .5 55 10 6 10

.8 88810  

   

  E  eV

2.

32 2

34 .1 054 10 10

.1 05410  

  

  

  x

p

 kg-m/s

1500

.1 054 10

 32  

    m

p p m  

36 7 10    m/s

2. (a)   tE 

  

16 19

34 .8 23 10 6.18 10

.1 05410  

   

  t  s

(b) 10

34

5 10

.1 054 10 

  

  x

p

25 .7 03 10    kg-m/s

2.

####### (a) If  1  , tx and  2  , tx are solutions to

Schrodinger’s wave equation, then

 

   

 

t

tx xV tx j x

tx

m 

    

  

 , ,

,

2

1 2 1

1

2 2 

and

 

   

 

t

tx xV tx j x

tx

m 

    

  

 , ,

,

2

2 2 2

2

2 2 

Adding the two equations, we obtain

     tx tx 

m x

, , 2 2 1 2

2 2   

 



       xV  1 , tx  2 , tx 

     tx tx 

t

j  1 ,  2 , 

  

which is Schrodinger’s wave equation. So

#######  1    , tx  2 , tx is also a solution.

####### (b) If  1    , tx  2 , tx were a solution to

Schrodinger’s wave equation, then we could write

 1 2    1 2 

2

2 2

2

   

 

 xV m x

 1  2 

  t

j 

which can be written as

 

  

  

  

   

 

m x x x x

1 2 2

1

2

2 2

2

2

1

2 2 2

  

 

  

  

     t t

xV j 1 2

2 1 2  1

Dividing by 1  2 , we find

 

  







 

   

 

   

m x x x x

1 2

21

2

1

2

1

2

2

2

2

2 1 1 2

2

  

  



 



  t t

xV j 1

1

2

2

1 1 

Semiconductor Physics and Devices: Basic Principles, 4 edition Chapter 2

By D. A. Neamen Problem Solutions

2.

####### P   x dx

2

 

(a) dx

x

a

a

 

  

  

  

 2

cos

22

4/

4/

40

2 sin

2

2

a

a

a

x

x

a 

 

  

 

  

  

  

  

 

  

 

  

 

  

 

  

 

a

a

a 

4

2

sin

2

2 4

  

 

  

   

  

  4 

1

8

2 a a

a

or P  .0 409

(b) dx a

x

a

P

a

a

 

  

  

  

 

2/

4/

2 cos

2

2/

4 4/

2 sin

2

2

a

a a

a

x

x

a 

 

  

 

  

  

  

  

 

 

  

 

  

 

 

  

  

  

 

a

a

a

a

a 

4

2

sin

4 8

sin

4

2

 

  

     4 

1

8

1 0 4

1 2

or P  .0 0908

(c) dx a

x

a

P

a

a

 

  

  

  

 

2 

2/

2/

cos

2

2/

2/

4

2 sin

2

2

a

a a

a

x

x

a



 

  

 

  

  

  

  

   

 

  

  

  

 

 

  

  

  

 

a

a

a

a

a 

4

sin

4 4

sin

4

2

or P  1

2.

(a) dx a

x

a

P

a

 

  

  

  

 

2  sin

22

4/

4/

2 4

4 sin

2

2

a

a

a

x

x

a 

 

  

 

  

  

  

  

 

 

  

  

  

 

a

a

a 

8

sin

8

2

or P  .0 25

(b) dx a

x

a

P

a

a

 

  

  

  

 

2  sin

22

2/

4/

2/

4/

2 4

4 sin

2

2

a

a a

a

x

x

a 

 

  

 

  

  

  

  

   

 

  

 

  

 

 

  

  

  

 

a

a

a

a

a 

8

sin

8 8

sin 2

4

2

or P  .0 25

(c) dx a

x

a

P

a

a

 

  

  

  

 

2  sin

22

2/

2/

2/

2/

2 4

4 sin

2

2

a

a a

a

x

x

a



 

  

 

  

  

  

  

   

 

  

  

  

 

 

  

  

  

 

a

a

a

a

a 

8

sin 2

8 4

sin 2

4

2

or P  1

2.

(a) (i) 4 8

12 10 8 10

8 10  

   k

p

  m/s

or 6  p  10 cm/s

9 8 .7 854 10 8 10

22    

 

   k

m

Semiconductor Physics and Devices: Basic Principles, 4 edition Chapter 2

By D. A. Neamen Problem Solutions

or

o  78. 54 A

(ii)   

31 4 .9 11 10 10

 p  m   27 .9 11 10    kg-m/s

  

2 31 42 .9 11 10 10 2

1

2

1  E  m   

23 .4 555 10    J

or 4 19

23 .2 85 10 6 10

.4 55510  

   

 E  eV

(b) (i) 4 9

13 10 5 10

5 10   

   k

p

  m/s

or

6  p  10 cm/s

9 9 .4 19 10 5 10

22    

 

   k

m

or

o  41 9. A

(ii)

27 .9 11 10

 p   kg-m/s 4 .2 85 10

 E   eV

2.

(a)  

j  kx t  tx Ae    , 

(b)   

19 2 2

1 E  .0 025 6  10  m  

 

31 2 .9 11 10 2

1    

so

4  .9 37  10 m/s 6  .9 37  10 cm/s

For electron traveling in  x direction, 6   .9 37  10 cm/s

  

31 4   .9 11  10  .9 37  10  p m 

26 .8 537 10    kg-m/s

9 26

34 .7 76 10 .8 537 10

.6 62510  

   

   p

h  m

8 9 .8 097 10 .7 76 10

2 2   

  

 k m  1

  

8 4  k  .8 097  10 .9 37  10

or 13  .7 586  10 rad/s

2.

(a)   

31 4   .9 11  10 5  10

 p m  26 .4 555 10

   kg-m/s

8 26

34 .1 454 10 .4 555 10

.6 62510  

   

   p

h  m

8 8 .4 32 10 .1 454 10

2 2   

  

 k m  1

  

8 4  k  .4 32  10 5  10 13  .2 16  10 rad/s

(b)   

31 6 .9 11 10 10

 p   25 .9 11 10    kg-m/s

10 25

34 .7 27 10 .9 11 10

.6 62510  

   

  m

9 10 .8 64 10 .7 272 10

2   

 

 k m  1

  

9 6 15  .8 64  10 10  .8 64  10 rad/s

2.

 

  

31 102

2 342 2

2

222

.92 11 10 75 10

.1 054 10

2  

 

  

 n 

ma

n En

 

2 21 .1 0698 10  En  n  J

or

 

19

2 21

6 10

.1 0698 10 

 

n En

or  

2 3 .6 686 10

 En  n  eV

Then 3 1 .6 6910

 E   eV 2 2 .2 6710

 E   eV 2 3 .6 0210

 E   eV

2.

(a)

 

  

31 102

2 342 2

2

222

.92 11 10 10 10

.1 054 10

2  

 

  

 n 

ma

n En

 

2 20 .6 018 10   n  J

or

 

.0 3761 

6 10

.6 018102 19

2 20 n

n En  

  

 eV

Then E 1  .0 376 eV

E 2  .1 504 eV

E 3  .3 385 eV

(b) E

hc



  

19 .3 385 .1 504 6 10

  E    19 .3 01 10

   J

Semiconductor Physics and Devices: Basic Principles, 4 edition Chapter 2

By D. A. Neamen Problem Solutions

2

2

2

2

2

2

z

Z XY y

Y XZ x

X YZ 

  

  

2 2  XYZ 

mE

Dividing by XYZ and letting 2

2 2

mE k  , we

find

(1) 0

1112 2

2

2

2

2

2   

   

   

  k z

Z

y Z

Y

x Y

X

X

We may set

12 2

2 2 2

2   

   

  k X x

X k x

X

X

x x

Solution is of the form

#######   xX  A sin  xxk  B cos  xxk

####### Boundary conditions: X   0  0  B  0

####### and  

a

n xX a k

x x

   0  

where nx  …,2,

Similarly, let

2 2

2 1 ky y

Y

Y

 

  and

2 2

2 1 kz z

Z

Z

 

 

Applying the boundary conditions, we find

a

n k

y y

  , ny  …,2,

a

n k

z z

  , nz  3,2, …

From Equation (1) above, we have

2 2 2 2  kx  ky  kz  k 

or

2

2 2 2 2 2

mE kx  ky  kz  k 

so that

 

2 2 2 2

22

2

nnn nx ny nz ma

E E zyx    



2.

(a)

   

 , 0

, , 2 2 2

2

2

2    

  

 yx

mE

y

yx

x

yx 

 

Solution is of the form:

 , yx  A sin xxk sin yyk

We find

#######  

Ak xk yk x

yx x cos x sin y

,   



 

Ak xk yk x

yx x sin x sin y

, 2 2

2   



#######  

Ak xk yk y

yx y sin x cos y

,   



 

Ak xk yk y

yx y sin x sin y

, 2 2

2   



Substituting into the original equation, we find:

(1) 0

2 2

2 2     

mE kx ky

From the boundary conditions,

A sin xak  0 , where

o a  40 A

So a

n k

x x

  , nx  …,3,2,

Also A sin ybk  0 , where

o b  20 A

So b

n k

y y

  , ny  …,3,2,

Substituting into Eq. (1) above

   2

22

2

2 22

2 b

n

a

n

m

E x y nn yx

  

(b)Energy is quantized – similar to 1-D result. There can be more than one quantum state per given energy – different than 1-D result.

2. (a) Derivation of energy levels exactly the same as in the text

(b)  

2 1

2 2 2

22

2

n n ma

 E  



For n 2  ,2 n 1  1

Then

2

22

2

3

ma

E

  

(i) For

o a  4 A

 

  

27 102

342 2

.12 67 10 4 10

.13 054 10

 

 

  

 E

22 .6 155 10

   J

or

3 19

22 .3 85 10 6 10

.6 15510  

   

  E  eV

Semiconductor Physics and Devices: Basic Principles, 4 edition Chapter 2

By D. A. Neamen Problem Solutions

(ii) For a  5 cm

 

  

27 22

34 2 2

.12 67 10 5 10

.13 054 10

 

 

  

 E

36 .3 939 10

   J or

17 19

36 .2 46 10 6 10

.3 93910  

   

  E  eV

2.

(a) For region II, x  0

 

    0

2 2 2 2

2

2    

 E V x

m

x

x O 

 General form of the solution is

#######  2   x  A 2 exp  jk 2 x  B 2 exp jk 2 x 

where

 E VO 

m k   22

2

Term with B 2 represents incident wave and

term with A 2 represents reflected wave.

Region I, x  0

 

  0

2 2 2 1

1

2   

 x

mE

x

x 

 General form of the solution is

#######  1   x  A 1 exp  jk 1 x  B 1 exp jk 1 x 

where

12

2

mE k 

Term involving B 1 represents the

transmitted wave and the term involving A 1

represents reflected wave: but if a particle is transmitted into region I, it will not be reflected so that A 1  0.

Then

#######  1   x  B 1 exp jk 1 x 

#######  2   x  A 2 exp  jk 2 x  B 2 exp jk 2 x 

(b) Boundary conditions:

####### (1)  1     x  0  2 x  0

(2) 0

2

1

  

  

x x x x

 

Applying the boundary conditions to the

solutions, we find

B 1  A 2  B 2

Ak 22  Bk 22  Bk 11

Combining these two equations, we find

2 2 1

2 1 2 B k k

k k A  

 

 

 

 

2 2 1

2 1

2 B k k

k B  

 

 

 

The reflection coefficient is 2

2 1

2 1 * 22

22 

 

 

 

   k k

k k

BB

AA R

The transmission coefficient is

 

2 1 2

421 1 k k

kk T R T 

   

2.

#######  2   x  A 2 exp  2 xk

 

 xk 

AA

x P 2 * 22

2

 exp 2

where

#######  

22

2

Vm E k o  

   

34

31 19

.1 054 10

.92 11 10 5 6.18 10 

 

   

9 k 2  .4 286  10 m  1

(a) For 10 5 5 10

   

o x A m

####### P exp 2 2 xk 

   

9 10 exp .42 2859 10 5 10     

 .0 0138

(b) For 10 15 15 10

   

o x A m

   

9 10 exp .42 2859 10 15 10  P    

6 .2 61 10   

(c) For 10 40 40 10

   

o x A m

   

9 10 exp .42 2859 10 40 10  P    

15 .1 29 10   

2.

 ak 

V

E

V

E T o o

161 exp 22  

 

 

  

 

 

 

 

where

#######  

22

2

Vm E k

o  

   

34

31 19

.1 054 10

.92 11 10 0 6.11 10 

 

   

Semiconductor Physics and Devices: Basic Principles, 4 edition Chapter 2

By D. A. Neamen Problem Solutions

where

12

2

mE k 

Region II:

#######  2   x  A 2 exp  2 xk  B 2 exp  2 xk

where

 

22

2

Vm E k

O  

Region III:

#######  3   x  A 3 exp  jk 1 x  B 3 exp jk 1 x 

(b)

In Region III, the B 3 term represents a

reflected wave. However, once a particle is transmitted into Region III, there will

not be a reflected wave so that B 3  0.

(c) Boundary conditions: At x  0 :  1  2 

A 1  B 1  A 2  B 2

  dx

d

dx

d  1  2

jkA 11  jkB 11  Ak 22  Bk 22

At x  a :  2  3 

####### A 2 exp  2 ak  B 2 exp  2 ak

#######  A 3 exp  jk 1 a

  dx

d

dx

d  2  3

####### Ak 22 exp  2 ak  Bk 22 exp  2 ak

#######  jkA 31 exp  jk 1 a

The transmission coefficient is defined as

11

33

AA

AA T 

so from the boundary conditions, we want to solve for A 3 in terms of A 1. Solving

for A 1 in terms of A 3 , we find

 k k    ak  ak 

kk

jA A 2 2 2 1

2 2 21

3 1 exp exp 4

  

 

 2 jkk 21 exp  2 ak exp  2 ak 

####### exp  jk 1 a

We then find

 

 k k    ak

kk

AA AA 2

2 1

2 2 2 21

33 11 exp 4

 

 

2 exp 2 ak

    

2 2 2

2 2

2  41 kk exp ak exp ak

We have

#######  

22

2

Vm E k O  

If we assume that VO  E , then 2 ak will

be large so that

####### exp  2 ak exp  2 ak

We can then write

 

   

2 2

2 1

2 2 2 21

33 11 exp 4

k k ak kk

AA AA  

  

2 2

2 2

2  41 kk exp ak

which becomes

 

 k k    ak

kk

AA AA 2

2 1

2 2 2 21

33 11 exp 2 4

 

Substituting the expressions for k 1 and

k 2 , we find

2

2 2

2 1

2

mVO k  k 

and

 

 

  

  

  

   2 2

2 2

2 1

22

 

Vm E mE kk O

 V E   E

m  O  

  

 

2

2

2

    E

V

E V

m

O

O  

 

 

   

  

  1

2

2

2 

Then

 

 

 

 

 

 

 

   

  

  

   

E V

E V

m

ak

mV AA

AA

O

O

O

1

2 16

exp 2

2

2

2

2

2

2

33

11

 ak 

V

E

V

E

AA

O O

2

33

16 1 exp 2 

 

 

 

  

 

 

 

Finally,

 ak 

V

E

V

E

AA

AA T O O

2 11

33 16 1 exp 2 

 

 

 

  

 

 

 

  

Semiconductor Physics and Devices: Basic Principles, 4 edition Chapter 2

By D. A. Neamen Problem Solutions

2.

Region I: V  0

 

   

 0

2 2 2 1

1

2 x

mE

x

x 

#######  1   x  A 1 exp  jk 1 x  B 1 exp jk 1 x 

incident reflected

where

12

2

mE k 

Region II: V  V 1

   

  

  

 0

2 2 2

1 2

2

2 x

mE V

x

x 

#######  2   x  A 2 exp  jk 2 x  B 2 exp jk 2 x 

transmitted reflected

where

#######  

2

1 2

2

mE V k

 

Region III: V  V 2

#######    

#######   

  

 0

2 2 3

2 2

3

2 x

mE V

x

x 

#######  3   x  A 3 exp  jk 3 x

transmitted

where

#######  

2

2 3

2

mE V k

 

There is no reflected wave in Region III.

The transmission coefficient is defined as:

11

33

1

3 * 11

33

1

3

AA

AA

k

k

AA

AA T     

From the boundary conditions, solve for A 3

in terms of A 1. The boundary conditions are:

At x  0 :  1  2 

A 1  B 1  A 2  B 2

 

  

x x

 1  2

Ak 11  Bk 11  Ak 22  Bk 22

At x  a :  2  3 

####### A 2 exp  jk 2 a  B 2 exp jk 2 a 

#######  A 3 exp  jk 3 a

 

  

x x

 2  3

####### Ak 22 exp  jk 2 a  Bk 22 exp jk 2 a 

#######  Ak 33 exp  jk 3 a

But 2 ak  2 n 

####### exp  jk 2 a exp jk 2 a  1

Then, eliminating B 1 , A 2 , B 2 from the

boundary condition equations, we find

#######    

2 1 3

31 2 1 3

2 1

1

3 4 4

k k

kk

k k

k

k

k T 

 

 

2. (a) Region I: Since VO  E , we can write

   

  0

2 2 2 1

1

2 

  

 x

Vm E

x

x O 

 Region II: V  0 , so

 

  0

2 2 2 2

2

2   

 x

mE

x

x 

Region III: V  3  0

The general solutions can be written, keeping in mind that  1 must remain

finite for x  0 , as

#######  1   x  B 1 exp  1 xk

#######  2   x  A 2 sin  2 xk  B 2 cos  2 xk

#######  3   x  0

where

#######  

12

2

Vm E k O   and 22

2

mE k 

(b) Boundary conditions

At x  0 :  1  2  B 1  B 2

1122

1 2 Bk Ak x x

  

  

 

At x  a :  2  3 

####### A 2 sin  2 ak  B 2 cos  2 ak  0

or

####### B 2  A 2 tan  2 ak

(c)

1 2

1 11 22 2 B k

k Bk Ak A 

 

 

 

   

and since B 1  B 2 , then

2 2

1 2 B k

k A 

 

 

 

 

Semiconductor Physics and Devices: Basic Principles, 4 edition Chapter 2

By D. A. Neamen Problem Solutions

 

 

 

 

 

  

 

 

 

 

 

 

 

 

o o o ao

r

a

r

a

r r r a

2 exp exp

1 1

2/5 2

2 

  

   m ra

E

m

oo

o

2

2

2 

exp 0

1 1

2/

 

 

 

 

 

 

 

 

  

 

 

 

  o ao

r

 a

where

 

2

2

22

4

1 4 o 22 oo

o

ma

em E E

  

   

Then the above equation becomes



 

  

  

 

 

 

 

 

 

 

 

 

 

  o o o ao

r r a ar

r

a

2

2

2/

2

1 exp

1 1

0 2

2 2 2 2  

 

 

 

 

 

  ma m ra

m

oo oo

o  

or

 

 

 

 

 

 

 

 

 

 

  o ao

r

a

exp

1 1

2/

2 1 1 2 2 2  

 



 

 

  

  ora ao ao ora

which gives 0 = 0 and shows that  100 is

indeed a solution to the wave equation.

2.

All elements are from the Group I column of

the periodic table. All have one valence

electron in the outer shell.

Semiconductor Physics and Devices: Basic Principles, 4 edition Chapter 3

By D. A. Neamen Problem Solutions

Chapter 3

3.

If ao were to increase, the bandgap energy

would decrease and the material would begin

to behave less like a semiconductor and more

like a metal. If ao were to decrease, the

bandgap energy would increase and the

material would begin to behave more like an

insulator.

3.

Schrodinger’s wave equation is:

 

    xV tx

x

tx

m

,

,

2 2

2 2   

 

#######  

t

tx j 

 

, 

Assume the solution is of the form:

#######    

 

 

   

   

  

  

    t

E tx xu jkx 

, exp

####### Region I:   xV  0. Substituting the

assumed solution into the wave equation, we

obtain:

#######  

 

 

   

   

  

  

  

  t

E jkux jkx m x 

 exp 2

2

#######  



 

 

 

   

   

  

  

  

  t

E jkx x

xu

exp

#######  

 

 

   

   

  

  

   

  

  t

E xu jkx

jE j  

 exp

which becomes

#######    

 

 

 

 

 

 

  

  

  

  t

E jk xu jkx m 

 exp 2

2

2

#######  

 

 

 

 

 

 

  

  

  

  t

E jkx x

xu jk 

2 exp

#######  



 

 

 

 

 

 

 

  

  

  

  t

E jkx x

xu

exp 2

2

#######  

 

 

 

 

 

 

  

  

   t

E Eux j kx 

exp

This equation may be written as

 

   

  0

2 2 2 2

2 2   

  

   xu

mE

x

xu

x

xu xuk jk 

####### Setting     xu  u 1 x for region I, the equation

becomes:

   

2   1   0

1 2 2 2

1

2   k  u x  dx

du x jk dx

ud x 

where

2

2 2

mE   Q.E.

####### In Region II,   xV  VO. Assume the same

form of the solution:

#######    

 

 

   

   

  

  

    t

E tx xu jkx 

, exp

Substituting into Schrodinger’s wave equation, we find:

#######    

 

 

   

   

  

  

  

  t

E jk xu jkx m 

 exp 2

2

2

#######  

 

 

   

   

  

  

  

  t

E jkx x

xu jk 

2 exp

#######  



 

 

 

   

   

  

  

  

  t

E j kx x

xu

exp 2

2

#######  

 

 

   

   

  

  

   t

E VO xu jkx 

exp

#######  

 

 

   

   

  

  

   t

E Eux jkx 

exp

This equation can be written as:

 

   

2

2 2 2 x

xu

x

xu xuk jk 

  

  

#######     0

2 2 2 2   xu 

mE xu

mVO

 

####### Setting     xu  u 2 x for region II, this

equation becomes

   

dx

du x jk dx

ud x 2 2

2

2  2

  0

2 2 2

2 2   

  

    u x

mV k

O

where again

2

2 2

mE   Q.E.

Page Not Found

Not Found

The requested URL was not found on this server.

Additionally, a 404 Not Found error was encountered while trying to use an ErrorDocument to handle the request.

Apache/2.4.41 (Ubuntu) Server at tunxis.commnet.edu Port 443

4th Edition: Buy Semiconductor Physics and Devices- Basic Principles

Description

“With its strong pedagogy, superior readability and thorough examination of the physics of semiconductor material, Semiconductor Physics and Devices, Fourth Edition provides a basis for understanding the characteristics, operation and limitations of semiconductor devices. Neamen’ s Semiconductor Physics and Devices deals with the electrical properties and characteristics of semiconductor materials and devices. The goal of this book is to bring together quantum mechanics, the quantum theory of solids, semiconductor material physics and semiconductor device physics in a clear and understandable way. Salient Features: 1) Extensive Coverage of Physics and Quantum Theory in chapters 2 and 3 thereby preparing students for a deeper understanding in developing new semiconductor devices. 2) Comprehensive Coverage of Semiconductor Devices is presented from Chapter 7 onward. Each chapter treats a different device family. The organization of this book is flexible to accommodate different preferences and teaching styles. 3) Design Examples and homework problems help students grasp more practical and open-ended problem-solving methods. The examples contain all the details of the analysis or design, so the reader does not have to fill in missing steps. These design-oriented examples are marked with an icon. 4) Enhanced Learning System with the inclusion of “”Test Your Understanding Exercises”” added after each example, and learning objectives are included before each example as well. A preview section opens each chapter and links the current chapter’s goals to those of earlier material.”

키워드에 대한 정보 semiconductor physics and devices 4th edition

다음은 Bing에서 semiconductor physics and devices 4th edition 주제에 대한 검색 결과입니다. 필요한 경우 더 읽을 수 있습니다.

See also  부산 성형 외과 추천 | 현직 성형외과상담실장이 알려주는 성형외과고르는법 추천! 267 개의 가장 정확한 답변
See also  Intj 여자 성격 | 빠르게 알아보는 Intj 인티제의 모든것 57 개의 정답

See also  퀴 노아 밥 | 초간단! 퀴노아를 가장 완벽하게 삶는 방법. #Quinoa 모든 답변

이 기사는 인터넷의 다양한 출처에서 편집되었습니다. 이 기사가 유용했기를 바랍니다. 이 기사가 유용하다고 생각되면 공유하십시오. 매우 감사합니다!

사람들이 주제에 대해 자주 검색하는 키워드 Introduction to Semiconductor Physics and Devices

  • electrical engineering
  • circuits
  • education
  • physics
  • electronics
  • electronics 1
  • semiconductor physics
  • semiconductor physics and devices
  • donald neamen semiconductor physics and devices
  • donald neamean book
  • semiconductor physics overview
  • semiconductor physics explained
  • electronics overview
  • electronics explained
  • semiconductor physics roadmap

Introduction #to #Semiconductor #Physics #and #Devices


YouTube에서 semiconductor physics and devices 4th edition 주제의 다른 동영상 보기

주제에 대한 기사를 시청해 주셔서 감사합니다 Introduction to Semiconductor Physics and Devices | semiconductor physics and devices 4th edition, 이 기사가 유용하다고 생각되면 공유하십시오, 매우 감사합니다.